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SUMMARY 
The work outlined below presents simple but effective adaptive meshing algorithms for boundary integral 
methods modelling inviscid flows (panel method) using the IGES standard for describing geometry. By 
using certain IGES entities in describing the boundary, CAD-derived geometry may be used such that the 
geometric integrity of the boundary is maintained after an adaptive redistribution of the mesh. Three types 
of error estimators are tested and all are shown to produce a more accurate representation of the flow 
phenomena for the same number of panels as compared with a uniform mesh distribution. 
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1. INTRODUCTION 

Although panel methods rely on a simple inviscid fluid model, they still have an important role 
to play, particularly in the initial design phase and in providing starting solutions for more 
complex numerical fluid models. Additionally, the integration of computer-aided-design (CAD) 
generated complex geometry data with the numerical solution of fluid models is becoming 
realizable within the world of increasingly powerful computational hardware and emerging CAD 
standards such as the Initial Graphics Exchange Specification (IGES)’ and STEP.’ Shorter 
design iteration times are now possible with the full integration of design stages and analysis 
software. 

Adaptive grid algorithms using a posteriori error indicators have been used extensively for 
finite difference and finite element methods for some time. It is only in the past few years that 
work has been undertaken on boundary elements. Three basic methods have been advocated, 
namely h-, p- and r-methods: h-methods essentially refine in areas of high error value, p-methods 
vary the order of the polynomial approximating the solution across each boundary element and 
finally r-methods keep both the polynomial order and the number of boundary elements constant 
but redistribute the mesh to reduce the global error. 

Ingber and Mitra3 presented a redistribution (r-method) for both harmonic and biharmonic 
equations, including the lid-driven cavity (for small Re) as a relevant example. Although 
improvements over uniform grids were small, the modelling of recirculation zones available from 
the biharmonic equation were significantly better. Rencis and Mullen4 used an h-method to 
provide self-adaptive meshes for an elasticity problem. Solutions for the current and previous 
meshes were used to provide error estimators for each element, which was subsequently 
subdivided into a number of divisions when the error became large enough. Carey and Kennon’ 
realized the importance of maintaining the geometry of the problem as well as providing a better 
solution in redistributing the mesh. Their method relied on a composite error indicator taking 
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into account both the solution and the geometry in the mesh redistribution. The number of 
elements remained constant. Rank6 combined both h- and p-methods in solving problems where 
singularities existed in the solution. In this case convergence to a mesh was obtained by using 
the p-method refinement far from singularities and the h-method refinement close to singularities. 
Additionally, residuals had to be evaluated at two non-collocation points for each element to 
provide numerical approximations to the error estimators. Guiggiani' presented an h-adaptive 
strategy together with an algorithm for truncating the mesh refinement procedure. The error 
estimator was based on the fundamental property for boundary elements that two independent 
problem definitions can be evaluated for the same model problem. Collocations were evaluated 
at two differing position sets and an error estimator was found from the difference between the 
two solutions. Clearly the computational work could be extensive if the problem size increased. 
Finally Sun and Zamani' have presented an adaptive hr-method with error indicators modelled 
by residuals formed from the interpolation operator across the boundary element. They show 
that the method is only applicable in 2D owing to the weak singularities and cannot be easily 
applicable to 3D. 

For the most part grid strategies have concentrated on classical stress modelling problems. 
In addition, r-methods have been chosen for their advantages in storage and CPU time. 
However, it has been shown' that the geometry of the problem is just as important as 
a solution and mesh redistribution and, if not carried out properly, can cause geometry 
degradation. Parallel algorithms for boundary element problem formulations9 have also 
shown that both computationally intensive schemes and storage problems can be alleviated 
and are not such a disadvantage as first presumed. P-methods also have the disadvantage 
that for relatively high polynomial orders the numerical integration becomes particularly 
difficult.' 

It is proposed that an integrated fluid/design tool should have the following characteristics. 
Firstly it should be able to use, with relative ease, the geometry emanating from generally 
available CAD design tools. Secondly it should be reasonably interactive so that the computa- 
tional cost will not be high. Thirdly it should model the flow with the greatest possible accuracy 
for that computational cost. 

The following work is based on the integration of a CAD-derived geometry and a simple fluid 
model along with an a posteriori mesh refinement technique with the ability to provide a mesh 
distribution with a reduced, constant or increased number of elements. As an initial model the 
element mesh length has a linear relationship with the estimated error rather than the more 
common use of binary subdivision. These error estimators are evaluated relatively cheaply by 
using heuristic arguments for their definitions. 

For modelling fluid flow, inviscid conditions are assumed and we use the well-known panel 
method" as the underlying solution mechanism. The work also shows that through the use of 
IGES data standardization the burden of integration is eased between differing software tools, 
thus providing a firm framework for progression towards more complex applications. 

Conjugate gradient (CG) algorithms have been shown to have advantages for the solution of 
dense linear matrix equations over other iterative methods such as Gauss-Seidel and direct 
methods, especially in the area of paralleli~ation.~ It is in this light that CG methods have been 
chosen to solve the dense matrix equations formed from panel methods. 

The case study used in this work was for the initial design of prosthetic heart valves.".12 Basic 
2D flow patterns and pressure contours were needed for various positions during the cardiac 
cycle of the leaflets inside a duct modelling the artery. At this stage quick results from the fluid 
model were essential, since a variety of shapes could be tried and analysed, each design emanating 
from CAD software, without the need for the designer to leave the workstation. 
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2. INITIAL GRAPHICS EXCHANGE SPECIFICATION (IGES) 

The Initial Graphics Exchange Specification has as its basic definition a set of file output formats 
representing product data. As set out in the version 4.0 IGES specification,' the file format 
establishes structures to be used for the digital representation and communication of product 
definition data. Thus it permits the compatible exchange of product definition data used by 
various computer-aided-design and computer-aided-manufacturing (CAD/CAM) systems. Some 
of these product definition data specify the geometry, in particular the bounding surface of a 
part or assembly of parts in or around which fluid may flow. This geometry is represented as 
a non-ordered listed set of predefined geometric entities. Examples of these entities are arcs, 
lines, points and B-spline curves/surfaces. Both 2D and 3D geometries may be represented in 
this way. The specification of the IGES output is such that it produces an ASCII text file. It is 
clear from the above definition that IGES (or any other standard for geometric data storage 
and output such as STEP) could provide a well-defined specification for the integration of 
boundary element methods in general. 

For the presented work only straight line and arc entities were used to describe the geometry 
of the design shape. It is important to note that other entities used in the CAD drawing, e.g. 
lines for the use of dimensioning arrows, are indistinguishable from the required geometric 
entities. In normal circumstances, however, this problem can easily be overcome, since the CAD 
user would provide dimensioning details on another layer (recognizable by the IGES file format) 
from the main drawing, thus enabling the IGES interface to recognize automatically the 
bounding surface of the design. 

3. PANEL METHOD THEORY AND SOLUTION METHOD 

No attempt will be made here to completely describe the panel method, since it has been fully 
documented The adaptive algorithm is independent of the order of approximation 
of the singularity and hence for simplicity the test cases and examples are modelled by a 
non-lifting source distribution of constant strength over each panel. 

Let qij be the velocity induced at the control point of the ith panel by a unit source density 
on thejth panel. This induced velocity may be evaluated by using the normal derivative of the 
perturbation potential and integrating over the panel surface S. For 2D the integral can be 
evaluated analytically; for axisymmetric and 3D geometries the integral is determined numeric- 
ally using only the spatial and geometrical information on the panels i and j ,  which is readily 
available. The normal velocity induced at the ith control point by the singularity distribution 
at thejth panel is thus 

(1) 

where n, is the unit normal vector of the ith panel and A, is termed the influence coefficient. 
From the boundary condition of a prescribed normal velocity on the body surface at each panel 
i we obtain the set of simultaneous equations 

A , .  = n.. q.. 
1.) I IJ' 

N 
C A ~ ~ D ~  = -vim .n ,  + F ~ ,  

j =  1 

i.e. the matrix equation 

ACT = b, (3) 



750 T. DAVID AND R. LEWIS 

where bi = -Vim - n, + F i ,  aj is the source density at the control point of panel j and Fi is a 
known transpiration velocity at the control point of panel i. Clearly, from the form of the integral 
defining the perturbation velocity, the matrix A is dense and non-symmetric. Once a solution 
has been obtained, the velocity at each control point on the solid surface is evaluated by 

N 

Velocities may now be evaluated at positions within the fluid surrounding the solid surface by 
using similar algorithms to that used in the influence matrix evaluation. The off-body velocity 
is evaluated with the use of the equation 

N 
vi = vijaj + vim. 

j= 1 

Here the matrix V i j  is evaluated by the same method as for q,, but in this case the panel centroid 
position i is substituted for the spatial position at which the off-body velocity is to be calculated. 
Since each perturbation velocity is evaluated from every other panel (including itself) so that 
the matrix Aij  is dense, the method chosen for solution in this case is a conjugate gradient 
algorithm owing to its efficient parallelization.’ For purposes of experiment the test cases were 
two-dimensional and used constant source distributions so that each panel had a single 
collocation point located at its centre. We note here that for both 2 D  and 3D cases the diagonal 
entries of A, i.e. aii, are 2n and all other entries aij are such that aij < 27r. Since conjugate gradient 
methods are minimization algorithms, in order to increase the efficiency of the algorithm, it is 
useful to obtain a good starting vector for c, i.e. as close to the minimum of the quadratic 
functional as possible. We assume that initially the matrix A can be approximated by the diagonal 
matrix 2x1, where I is the identity matrix. Thus the first approximation to the solution is given by 

go = b/2n. 

For its robustness we choose the conjugate gradient squared algorithm13 which is applicable 
to non-symmetric matrices. The algorithm is shown below. 

Defining the residual r as r = b - Ax, with x i  as the ith iterate, then 

r(xi) = ri = b - Axi. 

We choose an initial value xo for x, and set ro = ko = po. Thus for i = 0, 1 , .  . . , N 

ai = <rB, ki)/<roAPo)~ 

hi = ki - aiApi, 

T i +  = ri - aiA(hi + ki), 

xi+ 1 = Xi + aAhi + ki), 

B k  = (rX, ri+ 1 >/<r:, ri)? 

Pi+ 1 = r1+ 1 + 2Bihi + B?Pi, 

k i + l  = r i + l  + Pihi. 

The iteration is stopped when Ir, + I < E ,  with E specified a priori. 
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4. INITIAL DISCRETIZATION 

Once an initial design has been defined on a CAD system, the geometry and other data are 
output in the ICES format. The discretization algorithm searches the ICES file for each entity 
describing the geometry. These entities are initially discretized uniformly into panel segments. 
The number of panels per unit arc length (or unit area for 3D) of each entity is specified a priori 
such that they describe the geometry sufficiently. 

The class of problems chosen for this work requires 

(i) that all bodies be closed 
(ii) normal vectors for each panel point into the fluid. 

It is assumed that the first condition is met by the CAD user. The second requirement is met 
automatically by the software and is transparent from the user. 

The reordering of the panels is continuous around each body and specified to be anticlockwise. 
A user input of nominal panel length for straight line entities and nominal angle for arc entities 
is all that is required. 

5. ADAPTIVE PANEL DISTRIBUTION ALGORITHM 

It is a common occurrence in numerical simulations of fluid problems that the uniform 
discretization of either the boundary surface or the entire fluid domain may not be an optimal 
one. This is certainly the case for panel methods with arbitrary geometry. The algorithm provides 
that the zero (or prescribed) normal flow boundary condition is imposed only at the collocation 
point on each panel. This discrete condition allows the panel to ‘leak’ a t  positions other than 
the panel control points and therefore will not necessarily provide a good representation of a 
streamline along the body surface other than at the collocation position. Normally an adaptive 
discretization will be based on some local error as has been reviewed in Section 1. An objective 
of any adaptive mesh or boundary discretization will be to reduce that error over the full domain. 
The authors have taken the same approach with the present work; however, rather than try to 
find an actual error value, the philosophy has been to use the knowledge obtained of panel 
methods and the associated solution to obtain parameters which are in some sense proportional 
to the local error but computationally cheap. In addition, there is the important constraint that 
the adaptive redistribution of the panels should maintain the geometric integrity of the body 
derived from the CAD system. In all cases the guiding principle has been to adapt such that 
the flow is better represented close to the body surface (i.e, the body’s ‘leakage’ has been reduced). 
In the work presented here three different formulations emerged. 

1. Large fluid accelerations associated with sharp convex corners provide difficulties in 
modelling the fluid and cannot normally be guaranteed to provide a solution accurately 
modelling the flow phenomena.” An error parameter is formed by using the magnitude 
of the gradient of tangential velocity, Vu,, at the body surface. The error ET(m) associated 
with the mth panel centroid is defined as 

~ , ( m )  = Vu,(m). (14) 

Here Vu, is the magnitude of the tangential acceleration evaluated as a first-order 
approximation. Thus 
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where u,, and umy are the x- and y-components of the tangential velocity at the collocation 
point of the rnth panel respectively and (xm, y,)  are the co-ordinates of the rnth panel. The 
first-order approximation used here is for simplicity and can be of a higher order if 
necessary. It should be noted that the index m + 1 denotes the ‘nearest’ panel geometrically 
rather than ordinally. 

2. Following on from formulation 1, it is presumed that a function representing the variation 
in source strength with respect to the boundary arc length should be as smooth as possible. 
Hunt14 has already alluded to this but only provides an algorithm for special aerodynamic 
cases. The error algorithm presented here has been constructed completely independently 
from Hunt. Under this hypothesis an error parameter d m )  associated with the rnth panel 
centroid is defined to be directly proportional to the magnitude of the gradient of source 
strength with respect to the arc length s measured along the boundary: 

3. It is assumed that a ‘large’ value of average normal velocity across the entire panel, Li 
given by 

where Vi is the sum of the perturbation velocity due to all other panels and the onset 
velocity, will correspond to a ‘large’ error in some neighbourhood of the panel. Initial tests 
with single closed bodies have shown that increasing the number of panels will always 
reduce the total leakage defined as 

This is based on the principle that in the limit as N ,  the number of panels, approaches 
infinity, the solution approaches a continuous distribution of singularities, which is an 
‘ideal’ condition. An error parameter cL(m) is therefore defined by evaluation of the total 
leakage along the panel m. In order to provide a panel-independent error parameter, the 
average normal velocity across the panel is defined per unit panel length and given by 

In order to reduce the computational work at this point, the normal velocity V, - nm is 
evaluated at only two points, each a symmetrical distance from the collocation point to 
the panel ends. The sum of these velocities is then equated to the normal velocity Li given 
in equation (17) 

From the error evaluation described above (either E ~ ,  E, or cL) an ordered set [ti] of N error 
values is obtained, with each error value associated with the ith panel collocation point. In order 
to redistribute panels, there must be a relationship between error and panel length. A linear 
function is chosen to initially model the variation in panel length as a function of error values, 
the argument for this being that it is the most basic. The linear function is derived using the 
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maximum and minimum values of ei and the user-specified maximum and minimum values of 
panel length, Pmax and Pmin, so that a new panel length P ( E )  is found from 

In order for the integrity of the CAD-generated geometry data to be maintained, the IGES file 
is now reread and for each entity the following discretization algorithm is performed. 

Given some co-ordinate ( x i ,  yi) lying on the boundary, we associate an error value [ei3, which 
implies a panel arc length pi at this point. The algorithm provides a predictor point also lying 
on the boundary, 

( x i  + p i  cos 8, yi + pi sin 8) = (x,,, yp) ,  

where 8 is the angle that the entity curve makes with the x-axis at the point ( x i ,  yi). Using the 
point ( x p ,  y,,), a second panel arc length p p  is found by a similar association with an error value 
[&,I. The co-ordinates 

PI, + Pi sin 8 cos 6, yi + ~ 

2 

are used as the start and end points of a single panel lying along the entity curve. The panel 
redistribution, with a prudent choice of maximum and minimum panel lengths, can give rise to 
either a reduced, constant or increased number of panels used to define the body shape. However, 
it will normally be the case that an increase in the number of panels will occur, resulting in a 
better representation of the flow. 

6. RESULTS 

Three test cases are presented (two of which have analytical solutions) which represent a 
cross-section of general 2D problems. In all the figures shown the adaptive mesh distributions 
have the same number of panels as the uniform distribution, thereby enabling direct comparisons 
between boundary discretizations. 

We first consider the problem of modelling the flow past an infinitely long rectangular body 
whose width of two units is immersed in a unit uniform flow. Large changes in tangential velocity 
are found at the upstream and downstream corners of the body." The geometry was modelled 
using four straight line entities making up a rectangular body of aspect ratio 20. A uniform 
mesh of 84 panels was generated to provide the initial solution. The large number of constant 
length panels shows the sensitivity to the corner point singularity in obtaining even a crude 
solution for the fluid flow. Figures l(a)-l(d) show the meshes for the area surrounding the 
upstream stagnation point for all four discretizations. The asymmetry in some of these meshes 
is caused by the restriction of the final panel length needed to fit the associated IGES entity. 
Figures 2(a)-2(c) show the tangential surface speed V, as a function of the arc length measured 
clockwise from the upstream stagnation point for each of the error estimators compared with 
the speed obtained from both a uniform mesh solution and the exact solution. In all three cases 
the adaptive mesh provides a better representation of the flow, with a significant increase in 
mesh density close to the singular point at the edge of the rectangular body. The mesh obtained 
from the error estimator E, seems to have obtained the 'best' approximation given the restricted 
number of panels. Note should be taken here that the uniform distribution, even using a 
considerable number of panels, does not model the velocity increase around the corner at all. 
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( d )  1- uniform 

Figure 1 .  Mesh distributions for an infinite rectangular body: (a) E , ,  (b) E,, (c) E ~ ,  (d) uniform 

The second test case, again taken from Reference 10, shows how the adaptive meshing 
algorithm copes with discontinuous boundary conditions. Here the flow modelled is that of 
uniform distributed suction over the left-hand side of a unit-radius cylinder. The cylinder 
geometry consists of a single arc entity and is made up from 30 panels. Figures 3(a)-3(c) show 
the analytical solution of the tangential surface speed V, compared with both uniform and 
adaptive meshes concentrated around the boundary condition singularity where the velocity 
varies discontinuously for the three adaptive mesh distributions. All three error estimators 
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2. Tangential surface speed V, versus boundary arc length (rectangular body): (a) Err (b) E,, (c) E~ 
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Figure 2 (Continued) 
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Figure 3. Tangential surface speed VT versus boundary arc length (suction cylinder): (a) E ~ ,  (b) E,, (c) cL 
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Figure 4. Mesh distributions for a pair of heart valve leaflets: (a) uniform, (b) cT 
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5. Tangential surface speed V, versus boundary arc length using ET 



758 T. DAVID AND R. LEWIS 

provide an excellent approximation to the solution, modelling the peak with surprising accuracy 
compared with the uniform mesh. 

The third test case models the first-stage design of a pair of prosthetic mechanical heart valve 
leaflets. Here the relative positioning of the pivot points of the leaflets is an important design 
parameter; in this case they lie close together, with the fluid accelerating to extreme values when 
passing through the gap. Figure 4 shows the mesh distribution (30 panels) for both the uniform 
case and the adaptive algorithm for E ~ .  Figure 5 shows the tangential surface speed V, as a 
function of the arc length measured along the leaflet boundary, comparing the error estimator 
tT with the uniform mesh and an 'exact' solution. The 'exact' solution was evaluated using 800 
panels. It can be seen that the high-velocity peak is well approximated by the adaptive mesh 
and is a significant improvement over the uniform mesh for the same number of panels. There 
was little difference in the results from the estimators of E, and ct compared with that of E~ and 
those results are therefore not shown here. 

7. EXTENSIONS TO 3D 

Extensions to 3D provide no severe difficulties, since all three error parameters may be similarly 
defined in three dimensions. 

1. First we consider the tangential velocity gradient. In 3D we may define the error parameter 
E(m) as 

&Am) = max[Vvdk, m)] .  
k 

where k ranges over the n neighbours of a general n-sided polygonal panel (modelling the 
body surface) with VvT(k, m) defined as 

In this definition the error is associated with the maximum gradient, since averaging may 
cancel out gradients of opposite sign. 

2. Similarly the source function error may be defined as 

cs(rn) = max V a  
k 

and again k ranges over the n neighbours of the mth polygonal panel, with 

From a computational cost viewpoint it is best if the panels are planar. This can easily be 
achieved by the triangulation of each panel and is a relatively simple task.' 

3. Finally the error estimated from the normal velocity can be defined as follows. We assume 
initially that the 3D panel is either a quadrilateral or a triangle. The panel may be divided 
into four or three equal-area subpanels respectively and their corresponding centroids 
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found. The normal velocity as given in equation (17) is evaluated as these centroids and 
summed to find the total. Thus the error estimator is given as 

1 k  
ai j = l  

E~ = ;r C [(Vj oj)aj - F ~ u ~ ]  

for all panels i and k = 3,4. 

8. CONCLUSIONS 

It has been shown that the format of the IGES permits the compatible exchange of product 
definition data used by various computer-aided design and computer-aided manufacturing 
(CAD/CAM) systems with fluid analysis tools. By using these definition data, engineers may 
interact with their designs utilizing both CAD and CFD tools without leaving the workstation, 
thereby reducing design cycle times. 

An adaptive meshing algorithm has been presented which allows an initial simple fluid solution 
to be obtained from the CAD geometry data. The data are structured such that any redistribution 
of the mesh maintains the integrity of the geometry. Three error estimators have been defined 
using heuristic arguments from the flow solutions. They are based upon evaluations of 

(i) gradients of tangential surface velocity 
(ii) gradients of source strength 

(iii) average normal flow across the panel. 

Using the above error estimates, an adaptive boundary discretization may be defined providing 
a better approximation to the fluid problem. Results have been presented for 2D flows and 
compared with analytical solutions. It is shown that even with the same number of panels 
approximating the solid body a more accurate representation of the flow is obtained. The 
algorithm permits a reduced, constant or increased number of panels approximating the 
boundary. 

E, and gL have been defined and briefly 
discussed. 

Extensions to 3D of all three error estimators 
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